skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Evans, Nathan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evidence-accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behavior. EAMs have generated significant theoretical advances in psychology, behavioral economics, and cognitive neuroscience and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues and inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, relating experimental manipulations to EAM parameters, planning appropriate sample sizes, and preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the our substantial collective experience with EAMs. By encouraging good task-design practices and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Evidence accumulation models (EAMs) are powerful tools for making sense of human and animal decision-making behaviour. EAMs have generated significant theoretical advances in psychology, behavioural economics, and cognitive neuroscience, and are increasingly used as a measurement tool in clinical research and other applied settings. Obtaining valid and reliable inferences from EAMs depends on knowing how to establish a close match between model assumptions and features of the task/data to which the model is applied. However, this knowledge is rarely articulated in the EAM literature, leaving beginners to rely on the private advice of mentors and colleagues, and on inefficient trial-and-error learning. In this article, we provide practical guidance for designing tasks appropriate for EAMs, for relating experimental manipulations to EAM parameters, for planning appropriate sample sizes, and for preparing data and conducting an EAM analysis. Our advice is based on prior methodological studies and the authors’ substantial collective experience with EAMs. By encouraging good task design practices, and warning of potential pitfalls, we hope to improve the quality and trustworthiness of future EAM research and applications. 
    more » « less
  3. null (Ed.)
  4. Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating. 
    more » « less